✅ Các định lý hình học lớp 7 ⭐️⭐️⭐️⭐️⭐️

4.4/5 - (7 bình chọn)

Trọn bộ kiến thức lý thuyết hình học lớp 7

Công thức Toán lớp 7 Chương 1 Hình học

1. Hai góc đối đỉnh

2. Hai đường thẳng vuông góc

– Hai đường thẳng xx’, yy’ cắt nhau và trong các góc tạo thành có một góc

3. Đường trung trực của đoạn thẳng

– Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy.

– Khi xy là đường trung trực của đoạn thẳng AB ta cũng nói: Hai điểm A và B là đối xứng với nhau qua đường thẳng xy.

4. Các góc tạo bởi một đường thẳng cắt hai đường thẳng:

Đường thẳng c cắt hai đường thẳng a, b và tạo thành các cặp góc:

5. Hai đường thẳng song song

– Hai đường thẳng song song là hai đường thẳng không có điểm chung.

– Dấu hiệu nhận biết hai đường thẳng song song: Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a và b song song với nhau. Kí hiệu: a // b

6. Tiên đề Ơ – clit về đường thẳng song song

+) Tiên đề: Qua một điểm ở ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.

+) Tính chất: Nếu một đường thẳng cắt hai đường thẳng song song thì:

– Hai góc so le trong bằng nhau

– Hai góc đồng vị bằng nhau

– Hai góc trong cùng phía bù nhau

+) Nếu a // b thì:

Công thức Toán lớp 7 Chương 2 Hình học

1. Tổng ba góc trong một tam giác

– Góc ngoài của một tam giác là góc kề bù với một góc của tam giác ấy.

– Định lí: Mỗi góc ngoài của một tam giác bằng tổng của hai góc trong không kề với nó.

4. Các trường hợp bằng nhau của tam giác

– Trường hợp 1: Cạnh – cạnh – cạnh. Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

– Trường hợp 2: Cạnh – góc – cạnh. Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

– Trường hợp 3: Góc – cạnh – góc. Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

5. Tam giác cân: là tam giác có hai cạnh bằng nhau.

– Định lí 1: Trong một tam giác cân, hai góc ở đáy bằng nhau.

Hệ quả:

+ Trong một tam giác đều, mỗi góc bằng 600. Tam giác ABC đều thì

ΔvABC: AC2 + BC2 (Định lý Py-ta-go)

* Định lí đảo: Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.

ΔABC:

AC2 = a

AB2 + BC2 = a

⇒ AC2 = AB2 + BC2

Do đó ΔABC vuông tại B (Định lý Pytago đảo)

7. Các trường hợp bằng nhau của tam giác vuông

+ Trường hợp 1: Hai cạnh góc vuông.

Nếu hai cạnh góc vuông của tam giác vuông này bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

⇒ ΔvABC = ΔvDEF (Hai cạnh góc vuông)

+ Trường hợp 2: Cạnh góc vuông – góc nhọn.

Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai giác vuông đó bằng nhau.

⇒ ΔvABC = ΔvDEF (Cạnh góc vuông – góc nhọn)

+ Trường hợp 3: Cạnh huyền – góc nhọn

Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

⇒ ΔvABC = ΔvDEF (Cạnh huyền – góc nhọn)

+ Trường hợp 4: Cạnh huyền – cạnh góc vuông.

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

TỔNG HỢP CÔNG THỨC MÔN TOÁN LỚP 7 HÌNH HỌC

Tổng hợp kiến thức, công thức Toán lớp 7 Đại số, Hình học

TOÁN 7 HÌNH HỌC

Hệ thống kiến thức Hình học lớp 7, 8

Tổng hợp kiến thức Toán hình lớp 7

1. Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.

– Hai góc đối đỉnh thì bằng nhau.

2. Hai đường thẳng vuông góc là hai đường thẳng cắt nhau tạo thành bốn góc vuông.

3. Đường trung trực của một đoạn thẳng là đường thẳng đi qua trung điểm và vuông góc với đoạn thẳng đó.

4. Hai đường thẳng song song là hai đường thẳng không có điểm chung.

*Tính chất của hai đường thẳng song song

– Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì:

  • Hai góc so le trong còn lại bằng nhau
  • Hai góc đồng vị bằng nhau
  • Hai góc trong cùng phía bù nhau.

*Dấu hiệu nhận biết hai đường thẳng song song

– Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có:

  • Một cặp góc so le trong bằng nhau
  • Hoặc một cặp góc đồng vị bằng nhau
  • Hoặc hai góc trong cùng phía bù nhau thì a và b song song với nhau

– Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau.

– Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.

5. Tiên đề ơ – clit về đường thẳng song song

– Qua một điểm ở ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.

6.Từ vuông góc đến song song

– Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau.

– Một đường thẳng vuông góc với một trong hái đường thẳng song song thì nó cuãng vuông góc với đường thẳng kia.

– Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.

7. Tổng ba góc của một tam giác

– Tổng ba góc của một tam giác bằng 1800

– Trong một tam giác vuông,hai nhọn phụ nhau.

– Góc ngoài của một tam giác là góc kề bù với một góc trong của tam giác ấy.

– Mỗi góc ngoài của mmọt tam giác bằng tổng của hai góc trong không kề với nó.

8. Các trường hợp bằng nhau của hai tam giác thường

*Trường hợp 1: Cạnh – cạnh – cạnh

– Nếu 3 cạnh của tam giác này bằng 3 cạnh của tam giác kia thì hai tam giác đó bằng nhau.

*Trường hợp 2: Cạnh – góc – canh

– Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

*Trường hợp 3: Góc – cạnh – góc

Nếu một cạnh và hia góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

9. Các tam giác đặc biệt

a/ Tam giác cân

– Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau.

– Tính chất: Trong tam giác cân hai góc ở đáy bằng nhau.

– Cách chứng minh một tam giác là tam giác cân

+ C1: Chứng minh tam giác có 2 cạnh bằng nhau Tam giác đó là tam giác cân.

+ C2: Chứng minh tam giác có 2 góc bằng nhau Tam giác đó là tam giác cân.

+ C3: Chứng minh tam giác có 2 trong bốn đường (đường trung tuyến, đường phân giác, đường cao cùng xuất phát từ một đỉnh và đường trung trực ứng với cạnh đối diện của đỉnh này) trùng nhau Tam giác đó là tam giác cân.

b/ Tam giác vuông cân

– Định nghĩa: Tam giác vuông cân là tam giác vuông có hai cạnh góc vuông bằng nhau

– Tính chất: Trong tam giác vuông cân hai góc ở đáy bằng nhau và bằng 450

– Cách chứng minh một tam giác là tam giác vuông cân

+ C1: Chứng minh tam giác có một góc vuông và hai cạnh góc vuông bằng nhau

Tam giác đó là tam giác vuông cân.

+ C2: Chứng minh tam giác có hai góc cùng bằng 450 Tam giác đó là tam giác vuông cân.

c/ Tam giác đều

– Định nghĩa: Tam giác đều là tam giác có ba cạnh bằng nhau.

– Tính chất: Trong tam giác đều ba góc bằng nhau và bằng 600

– Cách chứng minh một tam giác là tam giác đều

+ C1: Chứng minh tam giác có ba cạnh bằng nhau Tam giác đó là tam giác đều.

+ C2: Chứng minh tam giác cân có một góc bằng 600 Tam giác đó là tam giác đều.

+ C3: Chứng minh tam giác có hai góc bằng 600 Tam giác đó là tam giác đều.

10. Các trường hợp bằng nhau của hai tam giác vuông

*Trường hợp 1: Hai cạnh góc vuông

– Nếu hai cạnh góc vuông của tam giác vuông này bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

*Trường hợp 2: Cạnh góc vuông và góc nhọn kề

– Nếu một cạnh góc vuông và góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

*Trường hợp 3: Cạnh huyền và góc nhọn

– Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

*Trường hợp 4: Cạnh huyền và cạnh góc vuông

– Nếu cạnh huyền và một cạnh góc vuông của tám giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Lớp 7 ⭐️⭐️⭐️⭐️⭐

🔢 GIA SƯ TOÁN LỚP 7

Hãy bình luận đầu tiên

Để lại một phản hồi

Thư điện tử của bạn sẽ không được hiện thị công khai.


*