18 Đề thi môn toán lớp 8 giữa học kì 2 (Có đáp án)

5/5 - (1 bình chọn)

Phòng Giáo dục và Đào tạo …..

Đề 1 thi giữa kì 2

Môn: Toán lớp 8

Thời gian làm bài: 90 phút

Bài 1. (3 điểm) Giải các phương trình sau:

a) (3x – 7)(x + 5) = (5 + x)(3 – 2x)

  

Bài 2. (2 điểm)

a) Tính độ dài x trong hình vẽ (Biết DE // BC )

 

b. Cho tam giác ABC có AB = 2cm, AC = 3cm, BC = 4 cm, phân giác AD. Tính độ dài của BD và CD.

Bài 3. (1.5 điểm)

Số học sinh của lớp 8A hơn số học sinh của lớp 8B là 5 bạn. Nếu chuyển 10 bạn từ lớp 8A sang lớp 8B thì số học sinh của lớp 8B bằng 3/2 số học sinh của lớp 8A. Tính số học sinh lúc đầu của mỗi lớp.

Bài 4. (3 điểm)

Cho tam giác nhọn ABC, kẻ đường cao AH, gọi M và N lần lượt là hình chiếu của điểm H lên cạnh AB, AC. Chứng minh

a) ΔMHA ∼ ΔHBA

b) AM.AB = AN.AC

c) Gọi I là trung điểm của AH. Tìm điều kiện của tam giác ABC để M; I; N thẳng hàng.

Bài 5. (0.5 điểm)

Tìm giá trị nhỏ nhất của biểu thức

Đáp án và Hướng dẫn làm bài

Câu Phần Nội dung
Câu 1 (3 điểm)

a

b

c

 
Câu 2 (2 điểm)

a

Áp dụng hệ quả của định lý Ta-lét ta có:

b

Ta có:

 
Câu 3 (1,5 điểm)  

Gọi số học sinh lớp 8B là x (x ∈ N; x > 5; học sinh)

Số học sinh lớp 8A là: x + 5 (học sinh)

Vì khi chuyển 10 học sinh lớp 8A sang lớp 8B thì số học sinh lớp 8B gấp rưỡi số học sinh lớp 8A nên ta có phương trình:

Giải pt và tìm được x = 35 (thỏa mãn)

Vậy Số học sinh lớp 8A lúc đầu là: 40 học sinh

   Số học sinh lớp 8B lúc đầu là: 35 học sinh

Câu 4 (3 điểm)

a

Vẽ hình đúng đến phần a

Xét ΔMHA và ΔHBA có:

∠AMH = ∠AHB = 90o (gt)

∠A: Góc chung

Suy ra, ΔMHA ∼ ΔHBA (g.g)

b

Từ (1) và (2) suy ra: AM.AB = AN.AC

c

Ta có:

∠MIH = ∠MAI + ∠AMI

∠NIH = ∠NAI + ∠ANI

Vì I là trung điểm của AC và ΔMHA và ΔNHA vuông tại M và N nên ta có AIN và AIM cân tại I. Suy ra:

∠MAI = ∠AMI và ∠NAI = ∠ANI

Do đó: ∠MIH + ∠NIH = 2(∠MAI + ∠NAI)

M; I; N thẳng hàng ⇔ ∠MIH + ∠NIH = 180o ⇔ ∠MAI + ∠NAI = 90o hay tam giác ABC vuông tại A.

Câu 5 (0,5 điểm)  

 

Phòng Giáo dục và Đào tạo …..

Đề 2 thi giữa kì 2

Môn: Toán lớp 8

Thời gian làm bài: 90 phút

A.Trắc nghiệm khách quan(2 điểm):

Khoanh tròn vào chữ cái đứng trước phương án trả lời đúng trong mỗi câu sau.

Câu 1: Điều kiện xác định của phương trình

là:

A. x ≠ 1      B. x ≠ 1 và x ≠ -2      C. x ≠ -2      D. x ≠ 1 và x ≠ 2

Câu 2: x = -2 là nghiệm của phương trình

Câu 3: Phương trình x3 – 1 = 0 tương đương với phương trình

Câu 4: Cho các phương trình: x(2x+5)=0 (1); 2y+3=2y-3 (2); (3); (3t+1)(t-1)=0 (4)

A. Phương trình (1) có tập nghiệm là

B. Phương trình (3) có tập nghiệm là S = R

C. Phương trình (2) tương đương với phương trình (3)

D. Phương trình (4) có tập nghiệm là

Câu 5: Cho ΔMNP, EF // MP, E ∈ MN, F ∈ NP ta có

Câu 6: Cho ΔABC, AD là phân giác của góc BAC, D BC. Biết AB=6cm; AC=15cm, khi đó BD/BC bằng

Câu 7: Cho ΔABC đồng dạng với ΔHIK theo tỷ số đồng dạng k=2/3, chu vi ΔABC bằng 60cm, chu vi ΔHIK bằng:

A. 30cm      B.90cm       C.9dm      D.40cm

Câu 8: Cho ΔABC đồng dạng với ΔHIK theo tỷ số đồng dạng k, ΔHIK đồng dạng với ΔDEF theo tỷ số đồng dạng m. ΔDEF đồng dạng với ΔABC theo tỷ số đồng dạng

B. TỰ LUẬN (8 ĐIỂM)

Bài 1. (2 điểm): Giải các phương trình sau:

Bài 2. (2 điểm): Giải bài toán bằng cách lập phương trình.

Một số tự nhiên lẻ có hai chữ số và chia hết cho 5. Hiệu của số đó và chữ số hàng chục của nó bằng 86. Tìm số đó.

Bài 3. (3 điểm): Cho tam giác ABC vuông ở A, AB = 6, AC = 8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.

a. Tính AD, DC.

b. Chứng minh

c. Chứng minh AB.BI = BD.HB và tam giác AID cân.

Bài 4. (1 điểm): Tìm x; y thỏa mãn phương trình sau:

x2 – 4x + y2 – 6y + 15 = 2

Đáp án và Hướng dẫn làm bài

A. TRẮC NGHIỆM (2 ĐIỂM)

Mỗi câu đúng cho 0,25 điểm

Câu 1 Câu 2 Câu 3 Câu 4 Câu 5 Câu 6 Câu 7 Câu 8
B A,C A,B,D A,C C C B,C C

Câu 1.

Điều kiện:

Chọn B.

Câu 2. x = -2 là nghiệm của phương trình

Chọn A, C.

Câu 3.Phương trình x3 – 1 = 0 tương đương với phương trình

Hai phương trình tương đường là hai phương trình có cùng tập nghiệm.

*) x3 – 1 = 0 ⇔ x3 = 1 ⇔ x = 1

Vậy tập nghiệm của phương trình x3 – 1 = 0

⇒ Loại đáp án A, C

*)

Tập nghiệm của phương trình x3 -3x + 2 = 0 là S = {1;2}

Vậy phương trình x3 – 1 = 0 tương đương với phương trình x3 – x2 + x – 1 = 0

Câu 4.

Vậy đáp án cần chọn là: B

Câu 5.

Vì EF//MP nên áp dụng định lý Ta-lét trong tam giác MNP ta được:

Câu 6.

Chọn C.

Câu 7: Cho ΔABC đồng dạng với ΔHIK theo tỷ số đồng dạng k=2/3, chu vi ΔABC bằng 60cm, chu vi ΔHIK bằng:

A. 30cm      B.90cm       C.9dm      D.40cm

Câu 8:

Vì:

ΔABC đồng dạng với ΔHIK theo tỷ số đồng dạng k

ΔHIK đồng dạng với ΔDEF theo tỷ số đồng dạng m

Suy ra, ΔABC đồng dạng với ΔDEF theo tỷ số đồng dạng k.m

Suy ra, ΔABC đồng dạng với ΔDEF theo tỷ số đồng dạng 1/km

Chọn C.

B. TỰ LUẬN (8 ĐIỂM)

Bài 1. (2 điểm): Giải các phương trình sau:

Bài 2. (2 điểm): Giải bài toán bằng cách lập phương trình.

Một số tự nhiên lẻ có hai chữ số và chia hết cho 5. Hiệu của số đó và chữ số hàng chục của nó bằng 86. Tìm số đó.

Bài 3. (3 điểm): Cho tam giác ABC vuông ở A, AB = 6, AC = 8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.

a. Tính AD, DC.

b. Chứng minh

c. Chứng minh AB.BI = BD.HB và tam giác AID cân.

Bài 4. (1 điểm): Tìm x; y thỏa mãn phương trình sau:

x2 – 4x + y2 – 6y + 15 = 2

C.

  Hướng dẫn chấm
Bài 1 (3 điểm)
Bài 2 (2 điểm)

Gọi x là chữ số hàng chục của số phải tìm (ĐK: 0<x≤9, x∈N)

Theo bài ra, ta có phương trình:

(10x + 5) – x = 86

9x + 5 = 86

x = 9 (thỏa mãn)

Vậy số cần tìm là 95

Bài 3 (3 điểm)

 

a. Tính AD, DC

Xét tam giác ABC vuông tại A, áp dụng định lý Py-ta-go ta có:

AB2 + AC2 = BC2 ⇒ BC2 = 100 ⇒ BC = 10cm

Xét tam giác ABC, có BD phân giác của góc ABC nên ta có:

⇒ AD = 3cm, DC = 5cm

b. Xét tam giác ABH, có BI là phân giác của góc ABH nên ta có:

Bài 4 (1 điểm) ss

 

Suy ra, x – 2 = 0; y – 3 = 0

⇒ x = 2; y = 3

Vậy x = 2; y = 3

Phòng Giáo dục và Đào tạo …..

Đề 3 thi giữa kì 2

Môn: Toán lớp 8

Thời gian làm bài: 90 phút

Bài 1 (3đ): Giải phương trình sau :

a) 2x + 4 = x – 1

b) 2x(x – 3) – 5(x – 3) = 0

Bài 2 (3đ): Giải bài toán bằng cách lập phương trình

Một người đi xe máy từ A đến B với vận tốc trung bình là 15 km/h. Lúc về người đó đi với vận tốc trung bình là 12 km/h, nên thời gian về nhiều hơn thời gian đi là 22 phút. Tính độ dài quãng đường từ A đến B.

Bài 3 (3.5đ): Cho tam giác AOB có AB = 18cm ; OA = 12cm ; OB = 9cm . Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm . Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC.

a) Tính độ dài OC ; CD.

b) Chứng minh rằng FD.BC = FC.AD;

c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N . Chứng minh OM = ON

Bài 4 (.5đ): Giải phương trình sau.

(x2 + 1)2 + 3x(x2 + 1) + 2x2 = 0

Đáp án và Hướng dẫn làm bài

Bài Nội dung
Bài 1 (3đ)

a) 2x + 4 = x – 1 ⇔ 2x – x = -4 -1 ⇔ x = -5

Vậy S = {-5}

b)

ss

Bài 2 (3đ)

Gọi quãng đường AB là x (km/h, x > 0)

Vậy quãng đường AB dài 22 km.

Bài 4 (3,5đ)

 

b) Xét tam giác FAB có

Bài 5 (0.5đ)

 

Vậy phương trình có duy nhất 1 nghiệm là x = -1.

Phòng Giáo dục và Đào tạo …..

Đề 4 thi giữa kì 2

Môn: Toán lớp 8

Thời gian làm bài: 90 phút

Câu 1: (3 điểm) Giải các phương trình sau:

a) 3x – 9 = 0

b) 3x + 2(x + 1) = 6x – 7

Câu 2: (1,5 điểm) Giải toán bằng cách lập phương trình:

Lúc 6 giờ sáng một ôtô khởi thành từ A để đi đến B. Đến 7 giờ 30 phút một ôtô thứ hai cũng khởi hành từ A để đi đến B với vận tốc lớn hơn vận tốc ôtô thứ nhất là 20km/h và hai xe gặp nhau lúc 10 giờ 30. Tính vận tốc mỗi ôtô? (ô tô không bị hư hỏng hay dừng lại dọc đường)

Câu 3: (1,5 điểm)

a) Giải bất phương trình 7x + 4 ≥ 5x – 8 và biểu diễn tập hợp nghiệm trên trục số.

b) Chứng minh rằng nếu: a + b = 1 thì

Câu 4: (1 điểm)

Cho hình lăng trụ đứng ABC.A’B’C’ có chiều cao AA’ = 6cm, đáy là tam giác vuông có hai cạnh góc vuông AB = 4cm và AC = 5cm. Tính thể tích của hình lăng trụ.

Câu 5: (3 điểm)

Cho tam giác ABC vuông ở A. Vẽ đường thẳng (d) đi qua A và song song với đường thẳng BC, BH vuông góc với (d) tại H .

a) Chứng minh ΔABC ∼ ΔHAB

b) Gọi K là hình chiếu của C trên (d). Chứng minh AH.AK = BH.CK

c) Gọi M là giao điểm của hai đoạn thẳng AB và HC. Tính độ dài đoạn thẳng HA và diện tích ΔMBC, khi AB = 3cm, AC = 4cm, BC = 5cm.

Đáp án và Hướng dẫn làm bài

Câu Nội dung
Câu 1 (3 điểm)

a) Giải phương trình.

3x – 9 = 0 ⇒ 3x = 9 ⇒ x = 3

Vậy S = {3}

b) 3x + 2(x + 1) = 6x – 7 ⇒ 3x + 2x + 2 = 6x – 7

⇒ 2 + 7 = 6x – 3x – 2x ⇒ 9 = x ⇒ x = 9

Câu 2 (1.5 điểm)

Gọi vận tốc (km/h) của ô tô thứ 1 là x (x > 0)

Vận tốc của ô tô thứ 2 là: x + 20

Đến khi hai xe gặp nhau (10 giờ 30 phút):

Giải ra ta được x = 40

Trả lời:

Vận tốc của ô tô thứ 1 là 40 (km/h)

Vận tốc của ô tô thứ 2 là 60 (km/h)

Câu 3 (1.5 điểm)

a) 7x + 4 ≥ 5x – 8 ⇒ 7x – 5x ≥ -8 – 4 ⇒ 2x ≥ -12 ⇒ x ≥ – 6

Vậy S = {x | x ≥ -6}

Câu 4 (1 điểm)
   
Câu 5 (3 điểm)

Đề 5 kiểm tra giữa kì 2 Toán 8

PHÒNG GD&ĐT ……..

TRƯỜNG THCS……

CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM

Độc lập – Tự do – Hạnh phúc

Môn: Toán – Đề số 1

Thời gian: 90 phút

Bài 1 (3 điểm): Giải phương trình:

a) (2x – 3)(5x – 6) = (2x – 3)(4x – 3)

b) x2 – 4 – (x + 5)(2 – x) = 0

Bài 2 (3 điểm): Giải bài toán bằng cách lập phương trình:

Một người đi từ A đến B với vận tốc 30km/h. Một lúc sau người đó đi từ B về A với vận tốc lớn hơn vận tốc ban đầu 5km/h, vậy thời gian đi từ B về A ít hơn 30 phút so với lúc đi. Tính quãng đường AB.

Bài 3 ( 3.5 điểm): Cho tam giác ABC, trung tuyến AM, tia phân giác của góc AMB cắt AB tại D, tia phân giác của góc AMC cắt AC tại E.

a. Chứng minh: DE // BC

b. Cho cạnh BC = 6cm; AM = 5cm. Tính độ dài cạnh DE?

Bài 4 (0.5 điểm): Giải phương trình:

Đáp án Đề thi giữa kì 2 Toán 8

Bài 1: 

a) (2x – 3)(5x – 6) = (2x – 3)(4x – 3)

<=> (2x – 3)(5x – 6) – (2x – 3)(4x – 3) = 0

<=> (2x – 3)(5x – 6 – 4x + 3) = 0

<=> (2x – 3)(x – 3) = 0

Vậy phương trình có nghiệm x = 3 hoặc x = 3/2

b)  x2 – 4 – (x + 5)(2 – x) = 0

<=> (x – 2)(x + 2) + (x + 5)(x – 2) = 0

<=> (x – 2)(x + 2 + x + 5) = 0

<=> (x – 2)(2x + 7) = 0

Đề 6 thi giữa kì 2 môn Toán lớp 8

Đáp án đề kiểm tra giữa kì 2 lớp 8 môn Toán

Câu 1:

Đề 7 thi giữa kì 2 môn Toán 8

Câu 1: (3 điểm) Giải các phương trình sau:

a) 3x – 9 = 0

b) 3x + 2(x + 1) = 6x – 7

c)

Câu 2: (1,5 điểm) Giải toán bằng cách lập phương trình:

Lúc 6 giờ sáng một ôtô khởi thành từ A để đi đến B. Đến 7 giờ 30 phút một ôtô thứ hai cũng khởi hành từ A để đi đến B với vận tốc lớn hơn vận tốc ôtô thứ nhất là 20km/h và hai xe gặp nhau lúc 10 giờ 30. Tính vận tốc mỗi ôtô? (ô tô không bị hư hỏng hay dừng lại dọc đường)

Câu 3: (1,5 điểm)

a) Giải bất phương trình 7x + 4 ≥ 5x – 8 và biểu diễn tập hợp nghiệm trên trục số.

b) Chứng minh rằng nếu: a + b = 1 thì

Câu 4: (1 điểm)

Cho hình lăng trụ đứng ABC.A’B’C’ có chiều cao AA’ = 6cm, đáy là tam giác vuông có hai cạnh góc vuông AB = 4cm và AC = 5cm. Tính thể tích của hình lăng trụ.

Câu 5: (3 điểm)

Cho tam giác ABC vuông ở A. Vẽ đường thẳng (d) đi qua A và song song với đường thẳng BC, BH vuông góc với (d) tại H .

a) Chứng minh ΔABC ∼ ΔHAB

b) Gọi K là hình chiếu của C trên (d). Chứng minh AH.AK = BH.CK

c) Gọi M là giao điểm của hai đoạn thẳng AB và HC. Tính độ dài đoạn thẳng HA và diện tích ΔMBC, khi AB = 3cm, AC = 4cm, BC = 5cm.

Đáp án và Hướng dẫn làm bài

Câu Nội dung
Câu 1 (3 điểm)

a) Giải phương trình.

3x – 9 = 0 ⇒ 3x = 9 ⇒ x = 3

Vậy S = {3}

b) 3x + 2(x + 1) = 6x – 7 ⇒ 3x + 2x + 2 = 6x – 7

⇒ 2 + 7 = 6x – 3x – 2x ⇒ 9 = x ⇒ x = 9

ss
Câu 2 (1.5 điểm)

Gọi vận tốc (km/h) của ô tô thứ 1 là x (x > 0)

Vận tốc của ô tô thứ 2 là: x + 20

Đến khi hai xe gặp nhau (10 giờ 30 phút):

Giải ra ta được x = 40

Trả lời:

Vận tốc của ô tô thứ 1 là 40 (km/h)

Vận tốc của ô tô thứ 2 là 60 (km/h)

Câu 3 (1.5 điểm)

a) 7x + 4 ≥ 5x – 8 ⇒ 7x – 5x ≥ -8 – 4 ⇒ 2x ≥ -12 ⇒ x ≥ – 6

Vậy S = {x | x ≥ -6}

Câu 4 (1 điểm)
 
Câu 5 (3 điểm)

Phòng Giáo dục và Đào tạo …..

Đề 8 thi giữa kì 2

Môn: Toán lớp 8

Thời gian làm bài: 90 phút

Bài 1. (3 điểm) Giải các phương trình sau:

a) (3x – 7)(x + 5) = (5 + x)(3 – 2x)

Bài 2. (2 điểm)

a) Tính độ dài x trong hình vẽ (Biết DE // BC )

b. Cho tam giác ABC có AB = 2cm, AC = 3cm, BC = 4 cm, phân giác AD. Tính độ dài của BD và CD.

Bài 3. (1.5 điểm)

Số học sinh của lớp 8A hơn số học sinh của lớp 8B là 5 bạn. Nếu chuyển 10 bạn từ lớp 8A sang lớp 8B thì số học sinh của lớp 8B bằng 3/2 số học sinh của lớp 8A. Tính số học sinh lúc đầu của mỗi lớp.

Bài 4. (3 điểm)

Cho tam giác nhọn ABC, kẻ đường cao AH, gọi M và N lần lượt là hình chiếu của điểm H lên cạnh AB, AC. Chứng minh

a) ΔMHA ∼ ΔHBA

b) AM.AB = AN.AC

c) Gọi I là trung điểm của AH. Tìm điều kiện của tam giác ABC để M; I; N thẳng hàng.

Bài 5. (0.5 điểm)

Tìm giá trị nhỏ nhất của biểu thức

Đáp án và Hướng dẫn làm bài

Câu Phần Nội dung
Câu 1 (3 điểm)

a

b

c

Câu 2 (2 điểm)

a

Áp dụng hệ quả của định lý Ta-lét ta có:

b

Ta có:

 
Câu 3 (1,5 điểm)  

Gọi số học sinh lớp 8B là x (x ∈ N; x > 5; học sinh)

Số học sinh lớp 8A là: x + 5 (học sinh)

Vì khi chuyển 10 học sinh lớp 8A sang lớp 8B thì số học sinh lớp 8B gấp rưỡi số học sinh lớp 8A nên ta có phương trình:

ss

Giải pt và tìm được x = 35 (thỏa mãn)

Vậy Số học sinh lớp 8A lúc đầu là: 40 học sinh

   Số học sinh lớp 8B lúc đầu là: 35 học sinh

Câu 4 (3 điểm)

a

Vẽ hình đúng đến phần a

Xét ΔMHA và ΔHBA có:

∠AMH = ∠AHB = 90o (gt)

∠A: Góc chung

Suy ra, ΔMHA ∼ ΔHBA (g.g) 

b

 

Từ (1) và (2) suy ra: AM.AB = AN.AC

c

Ta có:

∠MIH = ∠MAI + ∠AMI

∠NIH = ∠NAI + ∠ANI

Vì I là trung điểm của AC và ΔMHA và ΔNHA vuông tại M và N nên ta có AIN và AIM cân tại I. Suy ra:

∠MAI = ∠AMI và ∠NAI = ∠ANI

Do đó: ∠MIH + ∠NIH = 2(∠MAI + ∠NAI)

M; I; N thẳng hàng ⇔ ∠MIH + ∠NIH = 180o ⇔ ∠MAI + ∠NAI = 90o hay tam giác ABC vuông tại A.

Câu 5 (0,5 điểm)  

Đề 9 kiểm tra giữa học kì 2 Toán 8 trường THCS Lê Lợi – Ninh Thuận

 

Đề 10 giữa kỳ 2 Toán 8 trường THCS Hoàng Văn Thụ – Quảng Nam

 

Đề 11 kiểm tra giữa học kỳ 2 Toán 8 sở GD&ĐT Bắc Ninh

 

Đề12 thi giữa HK2 Toán 8 trường THCS Trần Phú – Quảng Nam

 

Đề 13 thi giữa học kỳ 2 Toán 8 trường THCS Kim Liên – Nghệ An

https://giasutamtaiduc.com/wp-content/uploads/2023/01/de-thi-giua-hoc-ky-2-toan-8-truong-thcs-kim-lien-nghe-an.pdf

Đề 14 thi giữa học kỳ 2 Toán 8 sở GD&ĐT Bắc Ninh

 

Đề15 khảo sát giữa kỳ 2 Toán 8 trường THCS Gia Khánh – Vĩnh Phúc

 

Đề 16 thi giữa học kỳ 2 Toán 8 phòng GD&ĐT Mỹ Hào – Hưng Yên

 

ĐỀ 17 KIỂM TRA GIỮA HỌC KÌ II

HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA GIỮA HỌC KÌ II

TRƯỜNG THCS…..

 

 

ĐỀ 18 KIỂM TRA ĐÁNH GIÁ GIỮA HỌC KÌ II

NĂM HỌC …

 MÔN: TOÁN 7

Thời gian làm bài,…. phút không kể thời gian giao đề.

  1. PHẦN TRẮC NGHIỆM:

Hãy viết vào bài làm chữ cái A, B, C hoặc D đứng trước câu trả lời đúng từ câu 1 đến câu 6:

PHẦN TỰ LUẬN:

Câu 7: Thời gian giải xong một bài toán (tính bằng phút) của mỗi học sinh lớp 7 được ghi lại ở bảng sau:

ĐÁP ÁN VÀ THANG ĐIỂM

Mọi chi tiết liên hệ với chúng tôi :
TRUNG TÂM GIA SƯ TÂM TÀI ĐỨC
Các số điện thoại tư vấn cho Phụ Huynh :
Điện Thoại : 091 62 65 673 hoặc 01634 136 810
Các số điện thoại tư vấn cho Gia sư :
Điện thoại : 0902 968 024 hoặc 0908 290 601

Hãy bình luận đầu tiên

Để lại một phản hồi

Thư điện tử của bạn sẽ không được hiện thị công khai.


*