Đề thi môn Toán vào lớp 10 có đáp án (Trắc nghiệm – Tự luận – Đề 1)

5/5 - (1 bình chọn)

Sở Giáo dục và Đào tạo ….

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Phần I. Trắc nghiệm (2 điểm)

b) Để đường thẳng (d): y = mx + 1 đi qua điểm A (3; 7), thì A ∈ d :

7 = m.3 + 1 ⇔ m = 2

Phương trình hoành độ giao điểm của (P) và (d) là:

2x2 = mx + 1 ⇔ 2x2 – mx – 1 = 0

Δ = m2 – 4.2.(-1) = m2 + 8 > 0

=> Phương trình có 2 nghiệm phân biệt, do đó (d) cắt (P) tại 2 điểm phân biệt

Theo định lí Vi-et, ta có:

Xét tứ giác SAOI có:

∠SAO = 90o (Do SA là tiếp tuyến của (O))

∠SOI = 90o (OI ⊥ BC)

=> ∠SAO + ∠SOI = 180o

=> Tứ giác SAOI là tứ giác nội tiếp

b) Tam giác AOD cân tại O có OH là đường cao

=> OH cũng là trung trực của AD

=> SO là trung trực của AD

=> SA = SA => ΔSAD cân tại S

=> ∠SAD = ∠SDA

Ta có:

d) Ta có: ∠PMQ = 90o (Góc nội tiếp chắn nửa đường tròn)

=> PS ⊥ MQ

Xét ΔSAM và ΔSPA có:

∠ASP là góc chung

∠SAM = ∠SPA (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AM)

=> ΔSAM ∼ ΔSPA

Sở Giáo dục và Đào tạo ….

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Trong các đường thẳng sau đây, đường thẳng nào đi qua điểm A (1; 3):

A. x – y = 3     B. 2x + y =5

C. 2x – y = 3    D. x + y = 5

Câu 8: Tính diện tích toàn phần của hình nón có bán kính đáy 5 cm và độ dài đường sinh là 7 cm:

A. 35π cm2   B. 45π cm2    C. 52π cm2   D. 60π cm2

Phần II. Tự luận

Bài 1: (1,5 điểm) Giải các phương trình và hệ phương trình:

a) √5x – 2√5 = 0

b)3x2 – 8x – 6 = 0

1.B2.C3.B4.A
5.D6.A7.C8.D

Phần II. Tự luận

Bài 1:

a) √5x – 2√5 = 0

⇔ √5x = 2√5

⇔ x = 2

Vậy phương trình có nghiệm x = 2.

b)3x2 – 8x – 6 = 0

Δ’ = (-4)2 – 3.(-6) = 34 > 0

Phương trình có 2 nghiệm phân biệt

Vậy hệ phương trình đã cho có nghiệm (x; y) = (1; 1)

Bài 2:

1) Cho 2 hàm số (P): y = x2 và (d): y = -3x + 4

Xét hàm số: y = 2x2

Bảng giá trị

x-2-1012
y = 2x241014

Đồ thị hàm số (P): y = x2 là đường parabol nằm phía trên trục hoành, nhận trục Oy là trục đối xứng và nhận đỉnh O (0;0) làm điểm thấp nhất

Xét hàm số y = -3x + 4

Bảng giá trị

x01
y = -3x + 441

b) phương trình hoành độ giao điểm của (P) và (d) là

x2 = – 3x + 4 ⇔ x2 + 3x – 4 = 0

=> phương trình có nghiệm x = 1 và x = – 4 ( do phương trình có dạng a + b + c =0)

Với x = 1 thì y = 1

Với x = – 4 thì y = 16

Vậy tọa độ giao điểm của (P) và (d) là (1; 1 ) và (-4; 16)

2) x2 – 2(m – 1)x – 2m = 0.

Δ’= (m-1)2 – (-2m) = m2 + 1 > 0 ∀m

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m

Theo định lí Vi- ét ta có:

a) Ta có:

∠AMB = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠DMC = 90o

∠ANB = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠DNC = 90o

Xét tứ giác MCND có:

∠DMC + ∠DNC = 90o + 90o = 180o

=> Tứ giác MCDN là tứ giác nội tiếp

Do ∠DMC = 90o nên DC là đường kính đường tròn ngoại tiếp tứ giác MCDN

Do đó tâm I của đường tròn ngoại tiếp tứ giác là trung điểm I của DC

b) Xét tam giác CAB có:

AN ⊥ BC

BM ⊥ AC

AN giao với BM tại H

=> H là trực tâm của tam giác CAB

=> CH ⊥ BA

Xét ΔCHB và ΔBNA có:

∠CBA là góc chung

∠CHB = ∠ANB = 90o

=>ΔCHB ∼ ΔANB

Bộ Đề thi vào lớp 10 môn Toán có đáp án (Trắc nghiệm – Tự luận)

🔢 GIA SƯ TOÁN LỚP 9

Hãy bình luận đầu tiên

Để lại một phản hồi

Thư điện tử của bạn sẽ không được hiện thị công khai.


*