Sở Giáo dục và Đào tạo ….
Kì thi tuyển sinh vào lớp 10
Môn thi: Toán (hệ Công lập)
Thời gian làm bài: 120 phút
Bài 1 : ( 1,5 điểm)
1) Rút gọn biểu thức sau:



Bài 2 :
1)
Giả sử điểm cố định mà (d3 ) luôn đi qua với mọi m là A(xo; yo)
yo = mxo + m + 2 đúng với mọi m
⇔m(xo + 1) + (2 – yo ) = 0 đúng với mọi m

Bài 3 :
1) Cho phương trình: x2 + 2(m – 1)x – (m + 1) = 0.
a) Khi m = 2 ta có phương trình:
x2 + 2x – 3 = 0
Phương trình có dạng a + b + c = 0 nên phương trình có nghiệm x = 1 và x = -3
Vậy tập nghiệm của phương trình là S = {1; -3}
b) Tìm giá trị của m để phương trình có một nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1
x2 + 2(m – 1)x – (m + 1) = 0
Δ’ = (m – 1)2-(m – 1) = (m – 1)(m – 2)
Để phương trình có 2 nghiệm phân biệt thì
Δ’ > 0 ⇔(m – 1)(m – 2) > 0



a) Xét tứ giác BEDC có:
∠BEC = 90o (CE là đường cao)
∠BDC = 90o (BD là đường cao)
=> Hai đỉnh D và E cùng nhìn cạnh BC dưới 1 góc vuông
=> Tứ giác BEDC là tứ giác nội tiếp
b) Xét ΔAEC và ΔADB có:
∠BAC là góc chung
∠AEC = ∠BDA = 90o
=> ΔAEC ∼ ΔADB (g.g)

S = 2πRh = 2πR2 = 128π (do chiều cao bằng bán kính đáy)
=> R = 8 cm ; h = 8cm
Thể tích của hình trụ là
V = πR2 h = π.82.8 = 512π (cm3)
Bài 5 :
Ta có:


✅ Đề thi tuyển sinh lớp 10 môn toán ⭐️⭐️⭐️⭐️⭐️
Để lại một phản hồi