Sở Giáo dục và Đào tạo TP Hà Nội
Kì thi tuyển sinh vào lớp 10
Môn thi: Toán (hệ Công lập)
Thời gian làm bài: 120 phút
Bài 1: (2 điểm) Cho biểu thức

2) Cho phương trình x2 + (m + 2)x + 2m = 0 (*)
a) Chứng minh phương trình (*) luôn có hai nghiệm x1, x2 với mọi m
b) Tìm biểu thức liên hệ giữa x1, x2 không phụ thuộc vào m.
Bài 4: (3,5 điểm) Cho đường tròn (O; R), đường kính AB. Kẻ tiếp tuyến Ax với đường tròn tại A. Lấy điểm M thuộc tia Ax, kẻ tiếp tuyến MC với đường tròn (O) tại C (C khác A). Tiếp tuyến của đường tròn tại B cắt AC tại D và cắt MC tại F. Nối OM cắt AC tại E.
1) Chứng minh tứ giác OBDE nội tiếp
2) Chứng minh AC. AD = 4R2
3) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ΔMOF
Bài 5: (0,5 điểm) Giải phương trình:

Đáp án và Hướng dẫn giải
Bài 1:




2)x2 + (m + 2)x + 2m = 0 (*)
a)Δ = (m + 2)2 – 4.2m = m2 + 4m + 4 – 8m = (m – 2)2 ≥ 0 ∀m
=> phương trình (*) luôn có hai nghiệm x1, x2 với mọi m
b) Theo hệ thức Vi- ét, ta có:


a) M là giao điểm của 2 tiếp tuyến MC và MA
=> MO là đường trung trực của đoạn thẳng AC =>MO ⊥ AC
Xét tứ giác OBDE có:
∠OED = 90o (MO ⊥ AC)
∠OBD = 90o (BD là tiếp tuyến của (O))
=> ∠OED + ∠OBD = 180o
=> Tứ giác OBDE là tứ giác nội tiếp
b) Xét tam giác ABD vuông tại D có BC là đường cao
Theo hệ thức lượng trong tam giác vuông: AC.AD = AB2 = (2R)2 = 4R2
Vậy AC.AD = 4R2
c) 2 tiếp tuyến MC và Ma cắt nhau tại M


✅ Đề thi tuyển sinh lớp 10 môn toán ⭐️⭐️⭐️⭐️⭐️
Để lại một phản hồi