Sở Giáo dục và Đào tạo ….
Kì thi tuyển sinh vào lớp 10
Môn thi: Toán (hệ Công lập)
Thời gian làm bài: 120 phút
Mục Lục
Phần I. Trắc nghiệm (2 điểm)

A. Hai đường tròn tiếp xúc ngoài với nhau
B. Hai đường tròn tiếp xúc trong với nhau
C. Hai đường tròn không giao nhau
D. Hai đường tròn cắt nhau
Câu 8: Thể tích hình cầu thay đổi như thế nào nếu bán kính hình cầu tăng gấp 2 lần
A. Tăng gấp 16 lần B. Tăng gấp 8 lần
C. Tăng gấp 4 lần D. Tăng gấp 2 lần
Phần II. Tự luận
Bài 1: (2 điểm)
1) Thu gọn biểu thức

Bài 4: (3,5 điểm) Cho đường tròn (O) có dây cung CD cố định. Gọi M là điểm nằm chính giữa cung nhỏ CD. Đường kính MN của đường tròn (O) cắt dây CD tại I. Lấy điểm E bất kỳ trên cung lớn CD, (E khác C,D,N); ME cắt CD tại K. Các đường thẳng NE và CD cắt nhau tại P.
a) Chứng minh rằng :Tứ giác IKEN nội tiếp
b) Chứng minh: EI.MN = NK.ME
c) NK cắt MP tại Q. Chứng minh: IK là phân giác của góc EIQ
d) Từ C vẽ đường thẳng vuông góc với EN cắt đường thẳng DE tại H. Chứng minh khi E di động trên cung lớn CD (E khác C, D, N) thì H luôn chạy trên một đường cố định.
Phần I. Trắc nghiệm
1.C | 2.D | 3.A | 4.D |
5.B | 6.A | 7.D | 8.B |
Phần II. Tự luận
Bài 1:


x | 0 | 1 |
y = 2x – 1 | -1 | 1 |
(P) : y = x2
Bảng giá trị
x | -2 | -1 | 0 | 1 | 2 |
y = x2 | 4 | 1 | 0 | 1 | 4 |
Đồ thị hàm số y = x2 là đường parabol nằm phía trên trục hoành, nhận Oy làm trục đối xứng và nhận điểm O(0; 0) là đỉnh và điểm thấp nhất

b) cho Parabol (P) : y = x2 và đường thẳng (d) :
y = 2mx – 2m + 1
Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = 2mx – 2m + 1
⇔ x2 – 2mx + 2m – 1 = 0
Δ’ = m2 – (2m – 1)=(m – 1)2
(d) và (P) cắt nhau tại 2 điểm phân biệt khi và chỉ khi phương trình hoành độ giao điểm có 2 nghiệm phân biệt
⇔ Δ’ > 0 ⇔ (m – 1)2 > 0 ⇔ m ≠ 1
Khi đó (d) cắt (P) tại 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)
Theo định lí Vi-et ta có: x1 + x2 = 2m
Từ giả thiết đề bài, tổng các tung độ giao điểm bằng 2 nên ta có:
2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2
⇔ 2m (x1 + x2) – 4m + 2 = 2
⇔ 4m2 – 4m = 0 ⇔ 4m(m – 1) = 0


a) Do M là điểm chính giữa cung CD nên OM ⊥ CD
=> ∠KIN = 90o
Xét tứ giác IKEN có:
∠KIN = 90o
∠KEN = 90o (góc nội tiếp chắn nửa đường tròn)
=> ∠KIN + ∠KEN = 180o
=> Tứ giác IKEN là tứ giác nội tiếp
b) Xét ΔMEI và ΔMNK có:
∠NME là góc chung
∠IEM = ∠MNK ( 2 góc nội tiếp cùng chắn cung IK)
=> ΔMEI ∼ ΔMNK (g.g)


Bộ Đề thi vào lớp 10 môn Toán có đáp án (Trắc nghiệm – Tự luận)
Để lại một phản hồi