Đề thi môn Toán vào lớp 10 có đáp án (Tự luận – Đề 3)

5/5 - (1 bình chọn)

Sở Giáo dục và Đào tạo ….

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài 1 : ( 2 điểm)Cho biểu thức:

Bài 5: ( 0,5 điểm) Cho a, b > 0 và a + b =< 2. Tìm giá trị nhỏ nhất của biểu thức

Đáp án và Hướng dẫn giải

Bài 1:

a) Với x ≥ 0; x ≠ 9, x ≠ 25

Vậy với x > 4; x ≠ 9, x ≠ 25 thì A <

Bài 2:

a) Với m ≠ 0, phương trình trên là phương trình bậc hai ẩn x

Δ’ = (m + 1)2 – m(m – 4) = m2 + 2m + 1 – m2 + 4m = 6m + 1

Phương trình có 2 nghiệm x1; x2 khi và chỉ khi Δ’ = 6m + 1 ≥ 0

Vậy số học sinh lớp 9A là 40 học sinh

Bài 4:

a) Xét tứ giác AMHN có:

∠AMH = 90o (MH ⊥ AB)

∠ANH = 90o (NH ⊥ AC)

=> ∠AMH + ∠ANH = 180o

=> Tứ giác AMHN là tứ giác nội tiếp

b) Ta có:

ΔAMH vuông tại M: ∠AHM + ∠MAH = 90o

ΔABH vuông tại H: ∠ABC + ∠MAH = 90o

=> ∠AHM = ∠ABC

Do tứ giác AMHN là tứ giác nội tiếp nên ∠AHM = ∠ANM (2 góc nội tiếp cùng chắn cung AM)

=> ∠ABC = ∠ANM

c) Kẻ đường kính AD của (O), Gọi I là giao điểm của AD và MN

ΔANH vuông tại N: ∠AHN + ∠NAH = 90o

ΔACH vuông tại H: ∠AHN + ∠ACB = 90o

=> ∠NAH = ∠ACB

Ta lại có: ∠ACB = ∠ADB (2 góc nội tiếp cùng chắn cung AB)

=> ∠NAH = ∠ADB

Mặt khác: tứ giác AMHN là tứ giác nội tiếp nên ∠AMN = ∠AHN (2 góc nội tiếp cùng chắn cung AN)

=> ∠AMN = ∠ADB

Xét ΔAMI và ΔABD có:

∠BAD là góc chung

∠AMN = ∠ADB

=> ΔAMI ∼ ΔADB

=> ∠ AIM = ∠ABD

Mà ∠ABD = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠AIM = 90o

Hay OA ⊥ MN

d) Xét tam giác AIN và tam giác ACD có:

∠DAC là góc chung

∠AIN = ∠ACD = 90o

=> ΔAIN ∼ ΔACD

🔢 GIA SƯ TOÁN LỚP 9

Đề thi tuyển sinh lớp 10 môn toán ⭐️⭐️⭐️⭐️⭐️

Hãy bình luận đầu tiên

Để lại một phản hồi

Thư điện tử của bạn sẽ không được hiện thị công khai.


*